A High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L
نویسندگان
چکیده
A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.
منابع مشابه
High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petall...
متن کاملGenetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to ...
متن کاملHigh-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.)
Rapeseed (Brassica napus L.) is one of the most important oil crops almost all over the world. Seed-related traits, including oil content (OC), silique length (SL), seeds per silique (SS), and seed weight (SW), are primary targets for oil yield improvement. To dissect the genetic basis of these traits, 192 recombinant inbred lines (RILs) were derived from two parents with distinct oil content a...
متن کاملSNP markers-based map construction and genome-wide linkage analysis in Brassica napus.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was const...
متن کاملDesign of New Genome- and Gene-Sourced Primers and Identification of QTL for Seed Oil Content in a Specially High-Oil Brassica napus Cultivar
Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oi...
متن کامل